A competitive ensemble pruning approach based on cross-validation technique

نویسنده

  • Qun Dai
چکیده

Ensemble pruning is crucial for the considerations of both efficiency and predictive accuracy of an ensemble system. This paper proposes a new Competitive measure for Ensemble Pruning based on Cross-Validation technique (CEPCV). Firstly, the data to be learnt by neural computing models are mostly drifting with time and environment, while the proposed CEPCV method can realize on-line ensemble pruning, taking full advantage of potentially valuable information. Secondly, CEPCV algorithm naturally inherits the predominance of the technique of cross-validation, which implies that those networks regarded as winners and selected into the pruned ensemble have the “strongest” generalization capability. Thirdly, CEPCV algorithm is essentially based on the strategy of “divide and rule, collect the wisdom”, which might alleviate the local minima problem of many conventional ensemble pruning approaches at the cost of a little greater computational cost, which is acceptable to most applications of ensemble learning. Experimental results on six benchmark classification tasks demonstrate that the proposed CEPCV algorithm is a well-tried ensemble pruning algorithm, which significantly improves the generalization and classification capability of the original ensemble.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic ensemble pruning based on multi-label classification

Dynamic (also known as instance-based) ensemble pruning, selects a (potentially) different subset of models from an ensemble during prediction based on the given unknown instance with the goal of maximizing prediction accuracy. This paper models dynamic ensemble pruning as a multi-label classification task, by considering the members of the ensemble as labels. Multi-label training examples are ...

متن کامل

Ensemble strategies to build neural network to facilitate decision making

There are three major strategies to form neural network ensembles. The simplest one is the Cross Validation strategy in which all members are trained with the same training data. Bagging and boosting strategies pro-duce perturbed sample from training data. This paper provides an ideal model based on two important factors: activation function and number of neurons in the hidden layer and based u...

متن کامل

An Empirical Investigation on the Use of Diversity for Creation of Classifier Ensembles

We address one of the main open issues about the use of diversity in multiple classifier systems: the effectiveness of the explicit use of diversity measures for creation of classifier ensembles. So far, diversity measures have been mostly used for ensemble pruning, namely, for selecting a subset of classifiers out of an original, larger ensemble. Here we focus on pruning techniques based on fo...

متن کامل

A SVM-Based Ensemble Approach to Multi-Document Summarization

In this paper, we present a Support Vector Machine (SVM) based ensemble approach to combat the extractive multi-document summarization problem. Although SVM can have a good generalization ability, it may experience a performance degradation through wrong classifications. We use a committee of several SVMs, i.e. Cross-Validation Committees (CVC), to form an ensemble of classifiers where the stra...

متن کامل

Analysis of Methods and Strategies for Diversity Based Genetation of Classifier Ensemble

A classifier ensemble is a group of individual base classifiers. Each classifier is trained individually by modifying the given data set to achieve diversity. During the testing phase the results given by each classifier are collected to give the final result using a technique called as majority voting. Empirical results prove that diversity amongst the base classifiers improves the accuracy of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2013